Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers
نویسندگان
چکیده
Bipolar direct current (DC) networks are emerging electrical systems used to improve the distribution capabilities of monopolar DC networks. These grids work with positive, negative, and neutral poles, they can transport two times power when compared grids. The distinctive features bipolar include ability deal loads (loads connected between positive negative poles) unbalanced load conditions, given that poles not necessarily equal ones. This imbalance deteriorates voltages it causes additional losses in comparison balanced operation scenarios. research addresses problem pole-swapping using combinatorial optimization methods order reduce total grid voltage profiles. a non-solidly grounded wire composed 21 85 nodes considered numerical validations. implemented Chu Beasley genetic algorithm, sine-cosine black-hole algorithm. Numerical results both test feeders demonstrate effect optimal final All simulations were run MATLAB programming environment triangular-based flow method, which is intended for radial system configurations.
منابع مشابه
fault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Optimal Localization of Shopping Centers Using Metaheuristic Genetic Algorithm
Efficiency and effectiveness is of importance for selection and localization. There should be regular methodology for targeting in the market by several methods. There is a necessity to have clear study for selection. In the current research, it has been studied the optimal localization at shopping centers. If there is not accuracy and validity, there will be achieved negative results for these...
متن کاملCooperative learning in neural networks using particle swarm optimizers
This paper presents a method to employ particle swarms optimizers in a cooperative configuration. This is achieved by splitting the input vector into several sub-vectors, each which is optimized cooperatively in its own swarm. The application of this technique to neural network training is investigated, with promising results.
متن کاملDiscrete all-pole modeling
A new method is introduced for parametric modeling of spectral envelopes when only a discrete set of spectral points is given. This method, which we call discrete all-pole (DAP) modeling, uses a discrete version of the Itakura-Saito distortion measure as its error criterion. One result is a new autocorrelation matching condition that overcomes the limitations of linear prediction and produces b...
متن کاملTHE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN OPTIMAL DESIGN OF TRUSSES USING METAHEURISTIC ALGORITHMS
Although Genetic algorithm (GA), Ant colony (AC) and Particle swarm optimization algorithm (PSO) have already been extended to various types of engineering problems, the effects of initial sampling beside constraints in the efficiency of algorithms, is still an interesting field. In this paper we show that, initial sampling with a special series of constraints play an important role in the conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2022
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics11132034